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AbstmcL We calculate the transverse phonon spectmm of a three-dimensional Wiper 
cryslal in a large magnetic field where the eleclrans occupy the lowest spin-polarized 
Landau level. The Calculation differs from that for a conventional phonon speetrum 
because the lattice is stable only in the presence of the magnetic field. We give specific 
results for wavevectors parallel and perpendicular to the magnetic field for the phonon 
spectrum of a Wigner crystal stale in the narma gap semiconductor HgCdR. The 
temperature dependence of the electron lattice specific heat is also calculated and varies 
at ~ 3 1 2 .  

1. Introduction 

Since the original prediction by Wigner (11 that a low density electron gas at zero 
temperature should crystallize into a solid, much theoretical effort [ 2 6 ]  has been 
devoted to understanding its properties. The crystalline state occurs when the eleG 
trostatic repulsion dominates the kinetic energy and the electrons localize to minimize 
the Coulomb interaction. In the very low density and finite temperature regime, the 
kinetic energy is entirely due to thermal motion and the formation of the crystal is 
similar to classical crystallization. At higher densities, it is the zero point motion 
of the electrons that competes with the Coulomb repulsion. If the density is high 
enough, the zero point energy is large enough to suppress the crystallization and a 
metallic state with delocalized electrons results at zero temperature. 

Although there is currently no direct evidence for the threedimensional quantum 
crystal, there have been numerous studies of the two-dimensional crystal, where the 
electrons form a triangular lattice [7]. Grimes and Adam [SI succeeded in producing 
a classical two-dimensional crystal in a monolayer of electrons confined to the surface 
of liquid helium. However, it is not possible to raise the electron density in this system 
sufficiently to study the quantum crystal because the electrons induce an instability 
in the helium surface. Dahm and co-workers [9] have studied electrons over a thin 
layer of helium on substrates like glass and have reached densities comparable to the 
crystallization point, but the surface is more disordered than the liquid He surface and 
high mobilities are hard to achieve. Another system that has been studied in some 
detail is the two-dimensional electron gas in a semiconductor heterojunction, but it 
has not been possible to reduce the electron density sufficiently to study the quantum 
melting because the scattering from the dopant impurities and surface defects proved 
strong enough to localize the carriers. 
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It was suggested by Durkan et a1 [IO] that the crystal would form more easily 
in a magnetic field. By applying a magnetic field of sufficient strength to put all 
the electrons in the lowest Landau level, the kinetic energy of motion perpendicular 
to the field would be quenched, and the critical electron density for crystallization 
would increase to a more accessible value. For a two-dimensional system where 
the motion along the field is also quantized, this Wigner crystal state will compete 
with the quantum liquid state of the fractional quantum Hall effect [ll]. Except 
in the immediate Vicinity of Landau filling fractions with a small odd denominator, 
current theoretical estimates [12] give a crystalline ground state for all filling factors 
of less than about 0.15, which is in accord with several recent measurements [13] on 
semiconductor heterojunctions. 

The threedimensional electron gas in a magnetic field has also been studied 
extensively, Kaplan and Glasser [14] suggested that the electrons crystallize into one- 
dimensional rods of electron gases oriented along the magnetic field. Kleppman and 
Elliot [lS] found that the ground state energy could be improved by localizing the 
charge along the rods in the form of a charge density wave (CDW). It was assumed 
[16, 171 that the evolution from a CDW state to a Wigner crystal with well localized 
charge is continuous. However, MacDonald and Byant [18], improving on previous 
work by including exchange interactions, found a wide variety of crystalline phases 
for varying magnetic field that differed in the degree of localization of the charge 
along the field. They found rod-like states, CDW states with a small modulation of 
the charge density along the field and a crystalline state with the electron charge well 
localized inside the unit cell. 

There have been several experimental studies of threedimensional Wigner c'ys- 
tallization in a high field. Early studies of n-InSb 1191 were claimed to show some 
evidence for a magnetic-field-induced Wigner crystal [6, 10, 151 and it has been postu- 
lated (201 that a Wigner crystal could form in the core of a white dwarf. Rasenbaum 
and co-workers [2l] and Schlicht and Nimtz 1221 performed a series of magnetotrans- 
port measurements that they claimed were evidence for a threedimensional Wigner 
transition in the narrow gap semiconductor HgCdTe in a high magnetic field. How- 
ever, there remains considerable controversy over whether the transition in HgCdR, 
which has also been seen in heat capacity [23] and spin resonance 1241 experiments, is 
better described as a magnetic-field-induced Mott transition [2S] or magnetic freeze- 

What is needed is clear experimental evidence of the crystalline nature if this 
controversy is to be resolved. Since the electron spacing in the crystal is typically 
800 84 neutron scattering [27] or ultraviolet light scattering could in principle be 
used. However, the fundamental property of the solid state is a finite resistance 
to shear, so a clear sign of the formation of a solid would be the detection of the 
transverse collective modes of the solid. While both a glassy state induced by disorder 
1281 and the Wigner state could be expected to show a finite shear modulus, a crystal 
is unique in that the phonon modes can show considerable anisotropy due to the 
reduced symmehy. 

Therefore, an unambiguous signal of the crystalline state would be the detection 
of anisotropy in the transverse modes. Since the electrons are moving against a rigid 
background, the modes could be detected by coupling to them with an electric field 
of the correct frequency. ?his could be done either with a meander line or by using 
ultrasound if the underlying medium is a piezoelectric semiconductor. 

In this paper we will examine the transverse modes of a three-dimensional Wigner 

out [26]. 
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crystal in a high magnetic field, with particular attention being paid to the anisotropy 
in the modes We shall see that, since the magnetic field produces much of the stabil- 
ity of the lattice, the phonon modes differ in several respects from the usual phonon 
modes [15,29,30] in the absence of the field. We will use material parameters appro- 
priate for HgCdTe to compute an actual phonon spectrum, although the technique 
can he applied to a variety of materials. We will restrict ourselves to the simplest 
nystal Structures, a centred tetragonal structure. and a hexagonal-close-packed (HCP) 
structure where the electron charge is well localized in all three directions. We expect 
that the results found here are also qualitatively correct in the other states found by 
Kaplan and Glasser [14] and MacDonald and Bryant [18] where the electron charge 
is more extended along the field. 

This paper is divided into four parts. In section 2 we set forth our technique for 
calculating the phonon spectrum. Section 3 will present the results for HgCdTk with 
the Wigner crystal in a centred tetragonal structure., since variational calculations [U] 
seem to label this as the preferred ground state at zero temperature. We will discuss 
the differences expected for the glassy state and for the other hypothesized [6, 151 
crystalline form, the HCP crystal. Section 4 contains the conclusions. 

2. Formalism 

We consider a system of electrons localized near sites Ri which form a regular 
three-dimensional lattice. The electrons experience a uniform magnetic field in the 
zdirection, which is described by a vector potential A = (8/2)(-y,z,O). The 
electrons interact with each other through a mutual Coulomb repulsion and with a 
rigid background charge of magnitude e/R, where R is the volume of a unit cell of 
the lattice. The Hamiltonian of the system is 

where m* is the effective mass of the electron, c0 is the background dielectric con- 
stant, U; is the coordinate of the i th  electron relative to the centre of the cell Ri, 
Ri, = Rj - R ,  is the distance between the centres of the two cells, and Jdp/R 
denotes an integration over the uniform background charge in a single unit cell. Be- 
cause each cell is electrically neutral, the largest interaction is between the electron 
in a given cell and the uniform background charge in that cell 15, 17, which is given 
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by the second term in (1). The interaction between the electrons and associated 
background charge in different cells, contained in the last three terms of (I), is much 
smaller, the two leading terms being a dipole-dipole (van der Waals) term and a 
quadrupole electrostatic term. 

In order to calculate the restoring force due to the Coulomb interaction, we need 
a good description of the electronic charge distribution in the cell. We will get this 
by a technique used by Kuramoto [17] for calculating the ground state energy of the 
crystal. Since the intercell interaction is small [5, 171, we will ignore it and consider 
only the interaction with the background charge in the WignerSeitz cell. We replace 
the cell by a prolate ellipsoid with the same volume. The potential of such a uniformly 
charged ellipsoid, including the Madelung energy of the background, is given by 

where the integration is over the region (x2 f y2)/a2 f z 2 / c 2  < 1, and c and a are 
the major and minor axes of the ellipsoid. The integral can be done in closed form 
to yield 

where y = c/a and = 4?rne2/eom' is the square of the plasma frequency with 
an electron density of n = l/n. Since we will find that the electron is localized 
well inside the cell, we can ignore the boundary. The resulting Schrddinger equation 
with this potential and the kinetic energy term from (1) is simply an anisotropic 
harmonic oscillator in a magnetic field. If we define raising and lowering operators 
b y x f i y =  d m ( A h + A ! ) a n d z =  d m ( A , + A ! ) , w h e r e a i  = 
(w,/2)* + w: and wc = (eB/m'c) is the cyclotron frequency, the Hamiltonian can 
be diagonalized to yield 

H = -4 f h (a, + 5) 
2 

+ h (n, + ?) A$A+ f h (RI - F) ALA- f hw,A!A, (4) 

where Vo is the constant term in (3). The ground state wavefunction for an electron 
at site R, is given by 

where a: = h/(2m"n,) and CY: = h / (2m 'wZ) .  We now adjust y so as to minimize 
the ground state energy [17], including the zero point energy. This yields a variational 
estimate of the ground state charge distribution. Plots of the resulting values for c, G, 
cyL and a, are given in figure 1. For large fields, aI approaches the magnetic length 
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Figure 1. The variation of the unit cell dimensioiw ( 4 , ~ )  and the dimensions of the 
charge distribution in the unit eel1 with magnetic field. The results shown apply 10 the 
m e  of HgCdTe wilh a ca&r density of 1.4 x 10" an-' as studied in 1211. 

d m  [17]. We also see that the charge distribution is well localized inside the 
cell, and is an elongated ellipsoid oriented along the field in a unit cell with a ratio 
of sides that is similar to the ratio of the dimensions of the charge distribution. 

In order to a m u n t  for the long range correlations due to the interactions, that 
have so far been neglected in our single particle picture, we include the van der Waals 
interaction between the localized charges. We use the usual expression [31] for the 
van der Waak interaction given by 

where the set li) denotes all excited states with energy E; of the two electrons with 
coordinates r, r' in cells a distance R apart and R is a unit vector. We use the 
Hamiltonian of (4) to calculate the van der Waals interaction. If 0 denotes the angle 
between R and the z-axis, we find the following form for the interaction in the limit 

wp 

Since we now have a reasonable approximation to the electron wavefunction in a 
single cell, we will be able to calculate the restoring force on the phonon. We take as 
the ground state wavefunction a product of the single cell wavefunctions [15,17], one 
for each cell. In what follows we will ignore the exchange interaction since it can be 
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shown 1151 to be very small for the range of magnetic fields we will consider. We can 
also ignore the non-orthogonality of the wavefunctions in different cells since it is of 
the Same order of magnitude as the exchange corrections [IS]. We will use a 'rigid 
ion' approximation where the electron has the same wavefunction as in the ground 
state, except that it is displaced from the cell centre. The equation of motion for the 
electron displacement d,(q, U) exp(i(q. R, -ut)  can be written 1291 

w2d, = iw,wc,p& t D,p(q)dp - ;;I;(E.m"(q,w) + Ezt (q ,w) )  

where cop-, is the antisymmetric matrix and Dop(q)  = DEF'(q) + is 
the dynamical matrix arising from the Coulomb repulsion and the van der Waals 
interaction. Because the background is rigid, the electronic motion is accompanied 
by a macroscopic electric field 129, 321, which we have removed from the Coulomb 
contribution to the dynamical matrix and written E". Eext is an externally applied 
field. If p ( q )  denotes the Fourier transform of the charge distribution in a cell, and 
we define FOie(q) = Ip(q)1zq,qg/q2, the Coulomb contribution to the dynamical 
matrix is given by 

(8) 
e 

(9) 
1 + C I F a p ( ~  + d -k  fop(^- 9 )  -2Fap(1)1 

?#O 

where the sum is over all non-zero reciprocal lattice vectors 1. 
From Maxwell's equations Em" obeys the equation of motion [29, 321 

[(WZ - U2q2)6,p + u 2 q , q @ ] q =  = .-4rw2P0 (10) 

where P, = ned, is the macroscopic polarization and u = c/& is the speed of 
light in the medium. We will consider only modes where w < uq. The van der Waals 
attraction gives a contribution to Do@ of the form 

Combining (8) and (10) yields a phonon equation of motion of the form 

The dispersion relationships for the collective modes can be found by finding the 
frequencies where the determinant of the right-hand side of (12) vanishes. There 
are two special cases, q = ( O , O , q )  and q = (q , ,qv ,O) ,  where the frequency of the 
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modes is easily found in closed form. For the case of p parallel to the z-axis we 
find, in addition to the usual helicon mode, an additional transverse mode circularly 
polarized in the x-y plane in the opposite sense to the helicon with the dispersion 
relationship 

For the case of p in the x-y plane, there are two low-frequency transverse modes. 
There is one transverse mode polarized in the r-direction with dispersion relationship 

and one with polarization B = i x q. 

(15) 

These dispersion relationships were derived by Kuramoto [29] in a slightly differ- 
ent form. He assumed that the dynamical matrix could be written in terms of a set 
of conventional elastic constants. In the present situation, however, it is not possible 
to write elastic moduli for the Coulomb restoring force for two reasons. First, if 
one were to write the dynamical matrix D, which is of order q2 as q -+ 0, as a 
sum of various elastic terms, the elastic ‘constants’ would actually depend [32] on 
the direction of q if the symmetly of the lattice were less than cubic, as it is here. 
These effects occur because of the long range of the Coulomb interaction. Second, 
the Coulomb energy in (3) is minimized if y = 1, that is if the lattice is isotropic. 
The large anisotropy induced by the magnetic field results in the dynamical matrix 
being evaluated in a charge configuration which is so far from its stable minimum (as 
far as the Coulomb repulsion is concerned) that several of the elastic constants are 
negative or fail to satisfy the conventional stability criteria [32]. We have therefore 
avoided introducing elastic constants in this discussion. 

We also have not restricted our discussion to a particular lattice structure so far, 
although we have assumed that there is only one electron per unit cell. Indeed, our 
use of an ellipsoid for the WignerSeitz cell could approximate the unit cell of any 
lattice with higher than two-fold symmetryabout the z-axis. On the basis of variational 
calculations [15] at zero temperature, either the centred teaagonal structure or the 
HCP lattice are possible ground states, with the former having a slightly lower energy. 
We will present detailed results only for the centred tetragonal structure, and will 
describe qualitatively the differences for the HCP structure. 

We have not described here the longitudinal modes of the lattice, since the rigid 
background causes them to lie at the plasma frequency and act like an optic mode 
[Z]. There are also higher electromagnetic modes that come from solving (8) and (10) 
without the approximation w << uq, but they are not significantly perturbed by the 
presence of the lattice. Since the electrons are localized, and the longitudinal modes 
occur at the plasma frequency, the only low-lying excitations of the Wigncr crystal 
are the transverse phonons. Thus the specific heat of the crystal will be dominated 
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F i y m  2. The phonon spectrum for transverse modo with p in Ihe (100) dimtion for 
the centred tetragonal SINCLUT~. Raults [or three values of magnetic field arc pmented 
(20, 30 and 40 kG). Note the p u l i %  upward curvature of the r-polarized mode. 

by the contribution from these transverse modes. From (13), (14) and (U) we see 
that the dispersion of these modes at small q is quadratic, rather than linear, so the 
temperature dependence of the specific heat will be different from that of a Debye 
model. 

If there is a low-lying mode with dispersion relationship w = Gqp, as q 4 0, 
where G and p are constants, it will contribute to the low-temperature heat capacity 
a term of the form 

where V is the volume, dS denotes an integral over all solid angles, r( z) is the 
gamma function, C(I) is the Riemann zeta function, and we have assumed the system 
is threedimensional. Each independent mode will give a separate term of this form. 
It is obvious that the modes with the largest value of p and the smallest G will 
dominate the expression for the specific heat as T -+ 0. As we will see later, the 
'anti-helicon' mode with the dispersion relationship given by (13) will give the largest 
contribution because the magnetic field (and therefore U,) is large and D,, (q)  - q2 
with a small coefficient. Therefore we expect the specific heat to vary as T3I2 at 
low temperatures and also vary as H3I2 with magnetic field. In a similar fashion, 
we expect the thermal conductivity to show the same kind of temperature and field 
dependence. 

3. Results 

For the HgCd'Ik samples used in the experimenb performed by Rosenbaum et a1 
[21], the effective mass was about IBO of an electron mass, the electron density was 



Mapetophonon modes of a 30 Wigner aystal 1259 

io.lov 
0.05 

0 
0 0.25 0.50 0.75 1.00 0 0.25 0.50 0.75 1.00 

qa E y g  - 
2- 2 r  

Pigmm 3. The phonon speetrum for transverse modes with q in the (110) direetion lor 
the centred tetragonal stmcture. Results tor three values oi magnetic field are presented 
(20, 30 and 40 kG). If the crystal structure were hsagonal there would be no difference 
betwean the (110) and (loa) directions. 

1.40 x 1014 and the dielectric constant was about 20. These values result in a 
plasma frequency of 210 GHz and a cyclotron frequency in a 10 kG field of 2200 Ghz 

In figure 2 we show results for the transverse phonon modes at three values of 
magnetic field for q along the (100)-axis and in figure 3 the modes for q along the 
(110)-axis. The modes along the (100) direction show a peculiar upward curvature 
about haUway to the edge of the zone, an effect which is also seen in the two- 
dimensional Wigner crystal 17, 331. In figure 4 we show the phonons along the (001) 
direction. For the range of fields and q values shown here, we have w,, 1 ~ q  B wp. 
The actual frequencies calculated here are about an order of magnitude smaller than 
those estimated by Kuramoto [29]. This is due to the fact that the restoring force 
for the transverse modes actually vanishes [32] for a set of point charges in a cubic 
lattice, so the magnitude of the restoring force is sensitive to the precise form of the 
charge distribution. For the modes shown here, even thme that seem linear for small 
q actually have a region where w vanes as q2, but it is too close to the origin to be 
visible. This quadratic behaviour results from the large magnetic field present. 

It is easily seen that the four-fold symmetry about the z-a& in the centred 
tetragonal structure leaves considerable anisotropy as q varies in the z-y plane. From 
(16) it is simple to show that the variation of frequency of the mode where ê  = x q 
with azimuthal angle 4 is given by w2 = w i  -w:sin2(2+) where from figures 2 and 
3 we find w1 is approximately 0 . 7 ~ ~ .  If this anisotropy could be detected, it would 
be a clear signal of the presence of the Wigner crystal state. If the crystal structure 
is HCP, however, this anisotropy is not present and it would be impossible to show 
that the crystalline state was present instead of a glassy state that might result if the 
disorder predominated. The change in the frequency of the modes with field can be 
traced almost entirely to the presence or absence of a factor of wC in (13), (14) and 
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Figure 4. 'he phonon spectrum lor transveme modes with q in the (001) direction for 
the centred tetragonal SLNClUTt. Raults for three values of magnetic Beld are presented 
(20, 30 and 40 kG). 

(15). The values of De@ are very slowly varying with the magnetic field, which can 
be explained from figure 1 by the slow variation of the charge distribution with field 
in the range we have presented here. This is clearly seen in the figure 3 for the mode 
polarized along the z-axis. 

In figure 5 we present calculations of the variation of the frequency of a tramverse 
mode with the angle relative to the magnetic field. For q along (001) the mode has 
a polarization opposite to the helicon mode, which means that the magnetic field 
softens the mode (which is the reason wc appears in the denominator of (13)). Since 
the magnetic energy is so large, the softening effect of the field disappears only when 
q is nearly perpendicular to the field. This explains the rapid rise in the frequency of 
the mode near the (100) direction. The rest of the variation of the mode with polar 
angle is simply due to the anisotropy of the lattice. The case of the hexagonal lattice 
will show similar behaviour to that presented here for the centred tetragonal lattice. 

Figure 5 shows that the 'anti-helicon' mode dispersion relationship given in (13) 
holds well provided q is not exactly perpendicular to the field, so we can use (13) 
to calculate the specific heat at low temperature. We find that the lattice specific 
heat per electron is roughly C/Nk, = 8.6 x 103(H(T)/T(K))3/2 for the region 
below 5 to 10 mK. Above this region, the specific heat is dominated by the other 
mode (15) which in this region is roughly linear with a speed of transvene sound of 
8.3 x lo5  cm s-l and gives a Debye T 3  behaviour. 

4. Conclusions 

We have calculated the transverse phonon spectrum for a three-dimensional Wigner 
crystal in a large magnetic field in the centred tctragonal structure. Our results in- 
dicate that if the ordered state is sufficicntly crystalline there will be considerable 
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Figure 5. Variation of the frrquenq of one of the t m " e  modes with polar angle. 
The magnitude of q was 6x4 at nl(5e). When q points along the (100) direction 
the mode is polarized along (OlO), while for q in the (001) direction the mode has 
polarization vector € = ( l , i , o ) .  

amount of anisotropy in the transverse modes for q perpendicular to the magnetic 
field. This would be an indication that the ground state is indeed crystalline. Mea- 
surements of the critical field for depinning [21] seem to indicate a crystallite size of 
the order of tens of micrometres. By cooling through the transition in an electric field 
it may be possible to increase the size of the crystal domains, much as high quality 
ionic crystals are grown. 

If the crystal is in a HCP or glassy structure, then this anisotropy will be absent 
and the phonon spectrum will not tell us much about the crystallinity of the or- 
dered state. However, the detection of these transveme modes will indicate that the 
Coulomb forces are sufficiently strong even in the presence of disorder to produce 
the finite shear modulus that is characteristic of a solid. 

Because of the extremely large magnetic field, which actually affects the strength 
of the shear response, the phonons are quite different from those of a conventional 
solid. The mode frequencies are very strong functions of the angle between the 
wavevector and the magnetic field. The frequencies vary as q2 rather than linearly 
with q at long wavelengths, leading to a specific heat which vanes as T312 instead of 
the usual Debye law. In addition the specific heat will vary as H312 at the lowest 
temperatures. 
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